Получение ксенона в промышленности. База данных по теплофизическим свойствам газов и их смесей, используемых в яэу. Примеры решения задач

ОПРЕДЕЛЕНИЕ

Ксенон расположен в пятом периоде VIII группе главной (A) подгруппе Периодической таблицы.

Относится к семейству инертных (благородных газов). Обозначение - Xe. Порядковый номер - 54. Относительная атомная масса - 131,3 а.е.м.

Электронное строение атома ксенона

Атом ксенона состоит из положительно заряженного ядра (+54), внутри которого есть 54 протона и 77 нейтронов, а вокруг, по пяти орбитам движется 54 электрона.

Рис.1. Схематическое строение атома ксенона.

Распределение электронов по орбиталям выглядит следующим образом:

54Xe) 2) 8) 18) 18) 8 ;

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 .

Внешний энергетический уровень атома ксенона содержит 8 электронов, т.е. полностью завершен (именно поэтому ксенон мало химически активный элемент). Все эти электроны являются валентными. Возбужденного состояния нет. Энергетическая диаграмма основного состояния принимает следующий вид:

Валентные электроны атома ксенона можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), m l (магнитное) и s (спиновое):

Подуровень

Примеры решения задач

ПРИМЕР 1

Задание Электронная формула аниона Э 2- [ 10 Ne]3s 2 3p 6 отвечает элементу: аргон, хлор, сера или фосфор?
Решение Для того, чтобы записать полную электронную формулу искомого элемента, нужно знать электронную конфигурацию неона:

10 Ne 1s 2 2s 2 2p 6 .

Тогда, полная электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 .

Так как при образовании отрицательно заряженных ионов элемент выступает в качестве акцептора протонов, то электронная формула элемента в основном состоянии имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 4 .

Общее количество электронов в электронной оболочке совпадает с порядковым номером элемента в Периодической таблице. Оно равно 16. Это сера.

Ответ Сера (S)
Ксенон
Атомный номер 54
Внешний вид простого вещества инертный газ без цвета, вкуса и запаха
Свойства атома
Атомная масса
(молярная масса)
131,29 а. е. м. ( /моль)
Радиус атома ? (108) пм
Энергия ионизации
(первый электрон)
1 170,0 (12,13) кДж /моль (эВ)
Электронная конфигурация 4d 10 5s 2 5p 6
Химические свойства
Ковалентный радиус 140 пм
Радиус иона 190 пм
Электроотрицательность
(по Полингу)
2,6
Электродный потенциал 0
Степени окисления 0, +1, +2, +4, +6, +8
Термодинамические свойства простого вещества
Плотность 3,52 (при −109 °C) /см ³
Молярная теплоёмкость 20,79 Дж/( ·моль)
Теплопроводность 0,0057 Вт /( ·)
Температура плавления 161,3
Теплота плавления 2,27 кДж /моль
Температура кипения 166,1
Теплота испарения 12,65 кДж /моль
Молярный объём 42,9 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
гранецентрированая
Параметры решётки 6,200
Отношение c/a
Температура Дебая n/a
Xe 54
131,29
4d 10 5s 2 5p 6
Ксенон

Ксенон — элемент главной подгруппы восьмой группы, пятого периода периодической системы химических элементов, с атомным номером 54. Обозначается символом Xe (Xenon). Простое вещество ксенон (CAS-номер: 7440-63-3) — инертный одноатомный газ без цвета, вкуса и запаха. Открыт в 1898 году английскими учеными У.Рамзаем и У. Рэлей как небольшая примесь к криптону.

Происхождение названия

ξένος — чужой.

Распространённость

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0.08 миллионной доли, хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Земная кора

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные изотопы ксенона, например, 133 Xe и 135 Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах.

Определение

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.

Физические свойства

Температура плавления −112 °C,температура кипения −108 °C,свечение в разряде фиолетовым цветом.

Химические свойства

Первый инертный газ, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона.

Изотопы ксенона

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0.1-0.2 % криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон. Из-за своей малой распространенности, ксенон гораздо дороже более легких инертных газов.

Ксенон (лат. Xenonum), Xe, химический элемент VIII группы периодической системы Д. И. Менделеева, относится к инертным газам; атомный номер 54, атомная масса 131,30. На Земле Ксенон присутствует главным образом в атмосфере. Атмосферный Ксенон состоит из 9 стабильных изотопов, среди которых преобладают 129 Хе, 131 Хе и 132 Хе. Открыт в 1898 году английскими исследователями У. Рамзаем и М. Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как примесь к криптону, с чем связано его название (от греч. xenos - чужой). Ксенон -весьма редкий элемент. При нормальных условиях 1000 м 3 воздуха содержат около 87 см 3 Ксенона. Ксенон - одноатомный газ без цвета и запаха; плотность при 0 °С и 10 5 н/м 2 (760 мм рт. ст.) 5,851 г/л, t пл -111,8 °С, t кип -108,1 °С. В твердом состоянии обладает кубической решеткой с параметром элементарной ячейки а = 6.25Å (при -185 °С). Пятая, внешняя электронная оболочка атома Ксенона содержит 8 электронов и весьма устойчива. Однако притяжение внешних электронов к ядру в атоме Ксенона экранировано большим количеством промежуточных электронных оболочек, и первый потенциал ионизации Ксенона, хотя и довольно велик (12, 13 эв), но значительно меньше, чем у других стабильных инертных газов. Поэтому Ксенон был первым инертным газом, для которого удалось получить химические соединение - XePtF 6 (канадский химик Н. Бартлетт, 1961). Дальнейшие исследования показали, что Ксенон способен проявлять валентности I, II, IV, VI и VIII. Лучше всего изучены соединения Ксенон с фтором: XeF 2 , XeF 4 , XeF 6 , XeF 8 , которые получают в специальных условиях, используя никелевую аппаратуру. Так, ХеF 4 можно синтезировать при простом пропускании смеси Хе и F 2 через нагретую никелевую трубку. Синтез XeF 2 возможен при облучении смеси Хе и F 2 ультрафиолетовым излучением. Получить же фториды XeF 6 и XeF 8 удается только при использовании высоких давлений (до 20 Мн/м 2 , или 200 ат) и повышенной температуры (300-600 °С). ХеF 4 наиболее устойчив (длительное время сохраняется при комнатной температуре), наименее устойчив XeF 8 (сохраняется при температуре ниже 77 К). При осторожном упаривании раствора XeF 4 в воде образуется весьма неустойчивый нелетучий оксид ХеО 3 - сильное взрывчатое вещество. Действием раствора Ва(ОН) 2 на XeF 6 можно получить ксенонат бария Ва 3 ХеО 6 Известны и соли, содержащие восьмивалентный Ксенон, - перксенонаты, например Na 4 ХеО 6 ·6Н 2 О. Действуя на него серной кислотой, можно получить высший оксид ХеO 4 . Известны двойные соли XeF 2· 2SbF 5 , XeF 6 ·AsF 3 и других, перхлорат ХеClО 4 - очень сильный окислитель и другие.

В промышленности Ксенон получают из воздуха. Вследствие очень низкого содержания Ксенона в атмосфере объем производства невелик.

Одно из самых важных применений Ксенона - использование его в мощных газоразрядных лампах. Кроме того, Ксенон находит применение для исследовательских и медицинских целей. Так, благодаря высокой способности Ксенона поглощать рентгеновское излучение его используют как контрастное вещество при исследовании головного мозга. Фториды Ксенона находят применение как мощные окислители и фторирующие агенты. В виде фторидов удобно хранить и транспортировать чрезвычайно агрессивный фтор.

, применение ксенона , производство ксенона , ксенон в светотехнике , ксенон в медицне

Этот газ, названный «чужим», практически перевернул с ног на голову представления химиков об инертных газах. С самого начала он проявил «странные» свойства: в отличие от других инертных газов, ксенон первым вступил в химическую реакцию, первым же образовал устойчивое соединение. И заодно сделал неуместным сам термин «инертные газы». Благодаря вновь открытому веществу ранее созданная «нулевая» группа периодической системы перестала существовать.

В поисках «чужого»

После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м 3 воздуха 9,3 л аргона и всего лишь 0,08 мл ксенона.

Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон. Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха. Индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см 3 этого газа. Необычайная для того времени тонкость эксперимента!

Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком. Любопытно, что с точки зрения химика ксенон на самом деле оказался «чужим» среди инертных газов. Он первым вступил в химическую реакцию, первым образовал устойчивое соединение. И потому сделал неуместным сам термин «инертные газы».

Синтез первых соединений ксенона поставил перед химиками вопрос о месте инертных газов в периодической системе. Прежде благородные газы были выделены в отдельную нулевую группу, что вполне отвечало представлению об их валентности. Но, когда ксенон вступил в химическую реакцию, когда стал известен его высший фторид, в котором валентность ксенона равна восьми (а это вполне согласуется со строением его электронной оболочки), инертные газы решили перенести в VIII группу. Нулевая группа перестала существовать.

Свойства ксенона

Ксенон, как и все инертные газы VIII группы таблицы Менделеева, состоит из одноатомных молекул, не имеет ни запаха, ни цвета, не горит и не поддерживает горение, не взрывоопасен, слабо растворяется в воде и очень быстро выделяется из организма через легкие.

Как инертный газ он благороден, никакой биотрансформации в организме не подвергается, не вступает ни в какие химические реакции. Инертность Хе обусловлена насыщенностью внешней электронной оболочки, электронные конфигурации его предельно замкнуты и максимально прочны. Порядковый номер Хе — 54, молекулярный вес —131,29. Плотность при 0 °С и 1 Ата составляет 5,89 кг/м 3 , что в 4 раза выше, чем у воздуха и в З,2 раза выше, чем у N 2 О.

Ксенон в природе

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные виды ксенона, например, 133 Xe и 135 Xe , получаются как результат нейтронного облучения ядерного топлива в реакторах.

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли, хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Получение ксенона

Основным источником промышленного производства ксенона является воздух, где в 1000 м 3 содержится 86 см 3 ксенона. В России и странах СНГ уровень годового промышленного производства чистого ксенона составляет около 1500 м 3 .

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1-0,2% криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. Как заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон.

Основными поставщиками сырья (криптон-ксенонового концентрата) являются крупные промышленные центры металлургической промышленности России. Для получения чистого ксенона используется криптон-ксеноновый концентрат, который подвергается криогенной ректификации на газоразделительных установках, обеспечивающих получение ксенона высокой чистоты (99,999%). Из-за своей малой распространенности ксенон гораздо дороже более легких инертных газов.

Ксенон на практике

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев. Ксенон используют для наполнения ламп накаливания , мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).

Радиоактивные изотопы (127 Xe , 133 Xe , 137 Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках. Фториды ксенона используют для пассивации металлов .

Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов .

С конца XX века ксенон стал применяться как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее — не вызывает химических последствий — как инертный газ). Первые диссертации о технике ксенонового наркоза в России появились в 1993 г. В качестве лечебного наркоза ксенон эффективно применяется для снятия острых абстинентных состояний и лечения наркомании, а также психических и соматических расстройств.

Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива , а также в качестве компонентов газовых смесей для лазеров.

В изотопе ксенон-129 возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией .

Ксенон (лат. Xenonum), Xe, химический элемент VIII группы периодической системы Д. И. Менделеева, относится к инертным газам; атомный номер 54, атомная масса 131,30. На Земле Ксенон присутствует главным образом в атмосфере. Атмосферный Ксенон состоит из 9 стабильных изотопов, среди которых преобладают 129 Хе, 131 Хе и 132 Хе.

Получение:

Получают ректификацией жидкого воздуха. Хотя содержание ксенона в атмосфере крайне мало, именно воздух - практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый - потому, что почти весь ксенон возвращается в атмосферу.

Физические свойства:

Ксенон представляет собой тяжелый, редкий и пассивный газ, который при значительном охлаждении может быть переведен в жидкое и твердое состояние. Как и все инертные газы он не имеет цвета и запаха. При высоком давлении способен образовывать кристаллические гидраты. Растворяется в воде и органических растворителях. Ксенон обладает сравнительно хорошей электропроводностью.

Химические свойства:

С точки зрения химика ксенон на самом деле оказался "чужим" среди инертных газов. Он первым вступил в химическую реакцию, первым образовал устойчивое соединение. И потому сделал неуместным сам термин "инертные газы".
Мысль о том, что ксенон может образовывать устойчивые соединения с галогенами, приходила в голову многим ученым. Так, еще в 1924 г. высказывалась идея, что фториды и хлориды ксенона термодинамически вполне стабильны и могут существовать при обычных условиях. Через девять лет эту идею поддержали и развили известные теоретики - Полинг и Оддо. Изучение электронной структуры ксенона с позиций квантовой механики привело к заключению что он должен образовывать устойчивые соединения с фтором.
Однако лишь в 1961 г. Бартлетт из газообразного гексафторида платины и газообразного ксенона получает первое химическое соединение ксенона - гексафторплатинат ксенона XePtF 6 .
Заставить ксенон вступить в реакцию без участия фтора (или некоторых его соединений) пока не удалось. Все известные ныне соединения ксенона получены из его фторидов.
Советские химики внесли большой вклад в синтез и изучение соединений ксенона (В. А. Легасов). В соединениях проявляет степени окисления +2, +4, +6, +7.

Важнейшие соединения:

Дифторид ксенона XeF2 , летучие кристаллы, имеет резкий специфический запах. Он образуется при действии электрического разряда на смесь ксенона и четырехфтористого углерода. Очень чистый XeF2 получается, если смесь ксенона и фтора облучить ультрафиолетом. Растворимость дифторида в воде невелика, однако раствор его - сильнейший окислитель. Постепенно окисляет воду, образуя ксенон, кислород и фтористый водород; особенно быстро реакция идет в щелочной среде.

Тетрафторид ксенона XeF4 , вполне устойчивое соединение, молекула его имеет форму квадрата с ионами фтора по углам и ксеноном в центре. Кристаллическое вещество, во влажном воздухе взрывоопасен. Гидролизуется в воде с образованием оксида ксенона ХеО3. Тетрафторид ксенона фторирует ртуть:
XeF4 + 2Hg = Хе + 2HgF2.
Платина тоже фторируется этим веществом, но только растворенным во фтористом водороде.

Гексафторид ксенона XeF6 , крист. вещество, чрезвычайно активен и разлагается со взрывом. Гидролизуется с образованием оксофторидов и оксида ксенона(VI), с растворами щелочей диспропорционирует, образуя перксенаты. Он легко реагирует с фторидами щелочных металлов (кроме LiF), образуя соединения типа CsF*XeF6

Гексафторплатинат ксенона XePtF6 твердое оранжево-желтое вещество. При нагревании в вакууме XePtF6возгоняется без разложения, в воде гидролизуется, выделяя ксенон:
2XеPtF6+6H2O = 2Xe+РtO3 + 12HF
Существует также соединение Xе2. Аналогичные соединения ксенон образует с гексафторидами рутения, родия и плутония.
Оксид ксенона(VI) , бесцветные, расплывающиеся на воздухе кристаллы. Молекула ХеО3 имеет структуру приплюснутой треугольной пирамиды с атомом ксенона в вершине. Это соединение крайне неустойчиво; при его разложении мощность взрыва приближается к мощности взрыва тротила. Растворим, сильный окислитель.
Ксенаты соли ксеноновой кислоты - H2ХеO4, растворимы, в щелочной среде разлагаются на ксенон и перксенаты. Окислители, взрывоопасны.

Оксид ксенона(VIII) Молекула ХеО4 построена в виде тетраэдра с атомом ксенона в центре. Вещество это нестойко, при температуре выше 0°С разлагается на кислород и ксенон. Иногда разложение носит характер взрыва.

Перксенаты соли перксеноновой кислоты - H4ХеO6, кристаллич., устойчивы до 300°С, нерастворимы. Самые сильные из известных окислителей.

Применение:

В светотехнике признание получили ксеноновые лампы высокого давления. В таких лампах светит дуговой разряд в ксеноне, находящемся под давлением в несколько десятков атмосфер. Свет в ксеноновых лампах появляется сразу после включения, он ярок и имеет непрерывный спектр - от ультрафиолетового до ближней области инфракрасного. Ксеноновые лампы применяются во всех случаях, когда правильная цветопередача имеет решающее значение: при киносъемках и кинопроекции, при освещении сцены и телевизионных студий, в текстильной и лакокрасочной промышленности.
Ксеноном пользуются и медики - при рентгеноскопических обследованиях головного мозга. Как и баритовая каша, применяющаяся при просвечивании кишечника, ксенон сильно поглощает рентгеновское излучение и помогает найти места поражения. При этом он совершенно безвреден.
Радиоактивный изотоп элемента № 54, ксенон-133, используют при исследовании функциональной деятельности легких и сердца.
В виде фторидов ксенона удобно хранить и транспортировать и дефицитный ксенон, и всеразрушающий фтор. Соединения ксенона используются также как сильные окислители и фторирующие агенты.