Момент импульса определение и формула для чайников. Момент импульса. Момент силы. Закон сохранения момента импульса. Изменение импульса. Процесс вращения и момент импульса

Пусть некоторое тело под действием силы F, приложенной в точке А, приходит во вращение вокруг оси ОО" (рис. 1.14).

Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р, опущенный из точки О (лежащей на оси) на направление силы, называют плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О:

М = Fp=Frsinα.

Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы:

(3.1)
Единица момента силы - ньютон-метр (Н м).

Направление М можно найти с помощью правила правого винта.

Моментом импульса частицы называется векторное произведение радиус-вектора частицы на её импульс:

или в скалярном виде L = гPsinα

Эта величины векторная и совпадает по направлению с векторами ω.

§ 3.2 Момент инерции. Теорема Штейнера

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

Моментом инерции материальной точки относительно оси враще­ния называют произведение массы этой точки на квадрат расстояния её от оси:

I i =m i r i 2 (3.2)

Момент инерции тела относительно оси вращения называют сумму мо­ментов инерции материальных точек, из которых состоит это тело:

(3.3)

Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

Наиболее просто определяется момент инерции тел, имеющих правильную геометрическую форму и равномерное распределение массы по объему.

· Момент инерции однородного стержня относительно оси, проходящей через центр инерции и перпендикулярной стержню

(3.6)

· Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

(3.7)

· Момент инерции тонкостенного цилиндра или обруча относительно оси, перпендикулярной плоскости его основания и проходящей через его центр,

(3.8)

· Момент инерции шара относительно диаметра

(3.9)

Рис.3.2

Приведенные формулы для моментов инерции тел даны при условии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует воспользоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

(3.11)

Единица момента инерции - килограмм-метр в квадрате (кг м 2).

Так, момент инерции однородного стержня относительно оси, проходящей через его конец, по теореме Штейнера равен

(3.12)

§ 3.3 Уравнение динамики вращательного движения твердого тела

Рассмотрим вначале материальную точку А массой m, движущуюся по окружности радиусом г (рис. 1.16). Пусть на нее действует постоянная сила F, направленная по касательной к окружности. Согласно второму закону Ньютона, эта сила вызывает тангенциальное ускорение или F = ma τ .

Используя соотношение a τ = βr , получаем F = m βr.

Умножим обе части написанного выше равенства на r.

Fr = m βr 2 . (3.13)

Левая часть выражения (3.13) является моментом силы: М= Fr. Правая часть представляет собой произведение углового ускорения β на момент инерции материальной точки А: J= m r 2 .

Угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции (основное уравнение динамики вращательного движения материальной точки ):

М = β J или (3.14)

При постоянном моменте вращающей силы угловое ускорение будет величиной постоянной и его можно выразить через разность угловых скоростей:

(3.15)

Тогда основное уравнение динамики вращательного движения можно записать в виде

или (3.16)

[ -момент импульса (или момент количества движения), МΔt - импульс момента сил (или импульс вращающего момента)].

Основное уравнение динамики вращательного движения можно записать в виде

(3.17)

§ 3.4 Закон сохранения момента импульса

Рассмотрим частый случай вращательного движения, когда суммарный момент внешних сил равен нулю. При вращательном движении тела каждая его частица движется с линейной скоростью υ = ωr, .

Момент импульса вращающегося тела равен сумме моментов

импульсов отдельных его частиц :

(3.18)

Изменение момента импульса равно импульсу момента сил:

dL=d(Jω)=Jdω=Mdt (3.19)

Если суммарный момент всех внешних сил, действующих на систему тела относительно произвольной неподвижной оси, равен нулю, т.е. М=0, то dL и векторная сумма моментов импульсов тел системы не изменяется с течением времени.

Сумма моментов импульсов всех тел изолированной системы сохраняется неизменной (закон сохранения момента импульса ):

d(Jω)=0 Jω=const (3.20)

Согласно закону сохранения момента импульса можно записать

J 1 ω 1 = J 2 ω 2 (3.21)

где J 1 и ω 1 - момент инерции и угловая скорость в начальный момент времени, а и J 2 и ω 2 – в момент времени t.

Из закона сохранения момента импульса следует, что при М=0 в процессе вращения системы вокруг оси любое изменение расстояния от тел до оси вращения должно сопровождаться изменением скорости их обращения вокруг этой оси. С увеличением расстояния скорость вращения уменьшается, с уменьшением – возрастает. Например, гимнаст, совершающий сальто, чтобы успеть сделать в воздухе несколько оборотов, во время прыжка свёртывается клубком. Балерина или фигуристка, кружась в пируэте, разводит руки если хочет замедлить вращение, и, наоборот, прижимает их к телу, когда старается вращаться как можно быстрее.

§ 3.5 Кинетическая энергия вращающегося тела

Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υ i =ωr i , тогда кинетическая энергия точки

или

Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:

(3.22)

(J - момент инерции тела относительно оси вращения)

Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис), это плоское движение . В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.

Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна

(3.23)

Из сопоставления формул кинетической энергии для поступательно­го и вращательного движений видно, что мерой инертности при враща­тельном движении служит момент инерции тела.

§ 3.6 Работа внешних сил при вращении твёрдого тела

При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:

ΔA = ΔE или

Учитывая, что Jβ = M, ωdr = dφ, имеем

ΔA =MΔφ (3.24)

Работа внешних сил при повороте твёрдого тела на конечный угол φ равна

При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.

Момент импульса относится к фундаментальным, основополагающим законам природы. Он непосредственно связан со свойствами симметрии пространства физического мира, в котором мы все живем. Благодаря закону своего сохранения, момент импульса определяет привычные для нас физические законы перемещения материальных тел в пространстве. Данной величиной характеризуется количество поступательного или вращательного движения.

Момент импульса, также называемый "кинетическим", "угловым" и "орбитальным", является важной характеристикой, зависящей от массы материального тела, особенностей ее распределения относительно воображаемой оси обращения и скорости перемещения. Здесь следует уточнить, что в механике вращение имеет более широкую трактовку. Даже мимо некой произвольно лежащей в пространстве точки можно считать вращательным, принимая ее за воображаемую ось.

Момент импульса и законы его сохранения были сформулированы Рене Декартом применительно к поступательно движущейся системе Правда, о сохранении типа он не упоминал. Лишь столетие спустя Леонардом Эйлером, а затем другим швейцарским ученым, физиком и математиком при изучении вращения материальной системы вокруг неподвижной центральной оси был сделан вывод, что и для такого вида перемещения в пространстве действует данный закон.

Дальнейшие исследования полностью подтвердили, что при отсутствии внешнего воздействия сумма произведения массы всех точек на общую скорость системы и расстояния до центра вращения остается неизменной. Несколько позднее французским ученым Патриком Дарси эти слагаемые были выражены через площади, заметаемые радиус-векторами за одинаковый период времени. Это позволило связать момент импульса материальной точки с некоторыми известными постулатами небесной механики и, в частности, с важнейшим положением о движении планет

Момент импульса твердого тела - третья динамическая переменная, к которой применимы положения фундаментального закона сохранения. Он гласит о том, что независимо от характера и при отсутствии внешнего воздействия данная величина в изолированной материальной системе всегда будет оставаться неизменной. Этот физический показатель может подвергнуться каким-либо изменениям только в случае наличия ненулевого момента воздействующих сил.

Из данного закона также следует, что если М = 0, любое изменение расстояния между телом (системой материальных точек) и центральной осью вращения непременно вызовет увеличение или уменьшение скорости его обращения вокруг центра. Например, гимнастка, выполняющая сальто, чтобы произвести в воздухе несколько оборотов, изначально свертывает свое тело в клубок. А балерины или фигуристки, вращаясь в пируэте, разводят руки в стороны, если хотят замедлить движение, и, наоборот, прижимают их к корпусу, когда стараются кружиться с большей скоростью. Таким образом, в спорте и искусстве используются фундаментальные законы природы.

Пусть дана материальная точка, имеющая импульср . Пусть её положение относительно точки О определяется радиусом-векторомr . Движение такой точки характеризуют моментом импульсаL .

Моментом импульса материальной точки относительно точки О называется векторная величина, равная векторному произведению радиуса-вектораr и вектора импульсаp :

L =[r ,p ].

Модуль момента импульса L =rp sin, где- угол между векторамиr и р . Направление вектора момента импульса определяется по правилу правого винта.

Размерность момента импульса [L ]=кг. м 2 /с.

Момент импульса тела относительно точки равен векторной сумме моментов импульсов частиц тела относительно той же точки

L =L 1 +L 2 +…+L N .

Проекция вектора момента импульса относительно точки О на ось z , проходящую через эту точку, называетсямоментом импульса относительно оси:

L z =[r ,p ] z .

Момент импульса относительно оси является скалярной величиной.

Момент импульса тела относительно оси z равен проекции момента им­пульса тела относительно точки О на осьz , проходящую через эту точку.

4.3. Связь момента силы и момента импульса

Момент импульса и момент силы связаны между собой. Найдём выражение, связывающее их.

Возьмём производную по времени от выражения, определяющего момент импульса:

Член
равен нулю, так как угол между вектором скоростиd r /dt и вектором импульсар равен нулю.

Производная импульса по времени, имеющаяся во втором члене полу­ченного выражения, равна силе (второй закон Ньютона). Поэтому можем запи­сать полученное выражение в следующей форме:

.

Но [r ,F ] есть по определению момент силыF относительно той же точки О. Поэтому

т.е. скорость изменения момента импульса частицы равнамоменту силы, действующему на эту частицу.

Проекция последнего уравнения на ось z выражает связь момента им­пульса относительно осиz и момента силы относительно той же оси.

.

4.4. Основной закон динамики вращательного движения

Пусть твёрдое тело вращается относительно неподвижной оси z .

Выразим момент импульса твёрдого тела относительно оси вращения. Для этого представим твёрдое тело как совокупность элементарных масс. Момент импульса одной элементарной массы относительно осиz

Момент импульса всего тела равен сумме моментов импульсов всех эле­ментарных масс

Скорость v у разных элементарных масс различна, а угловая скорость одинакова.

Поскольку v =r ,

Поскольку угловая скорость со одинакова для всех элементарных масс, её можно вынести за знак суммы

Введём обозначение
. С учётом этого

L z =J z . .

Ранее мы получили, что момент импульса и момент силы связаны сле­дующим образом:

.

Заменив L z наJ z ωи с учётом того, чтоJ z с течением времени не изменяется, получаем

Учитывая, что производная угловой скорости по времени равна угловому ускорению , получаем

.

Полученное выражение - основной закон динамики вращательного движения, связывающий между собой меру внешнего воздействия - момент силы M z с результатом внешнего воздействия - угловым ускорением.

Коэффициент J z , стоящий в этом уравнении, зависит от массы тела и от то­го, как она распределена по объёму тела (это видно из определения величиныJ z ).

Чем меньше J z , тем большее угловое ускорение получит тело при воздей­ствии момента силыM z . Это говорит о том, что коэффициентJ z . характеризует инертность вращающегося тела. ПоэтомуJ z называют моментом инерции тела относительно осиz .

Знание величины момента инерции тела необходимо для описания враща­тельного движения. Поэтому обсудим более подробно, что такое момент инер­ции и как его вычислить.

Момент импульса тела относительно неподвижной оси вращения

Определение

Момент импульса - векторная физическая величина характеризующая импульс, численно равная векторному произведению
Момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.
Момент импульса замкнутой системы сохраняется.
Эта величина называется моментом импульса относительно оси.

Закон сохранения момента импульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем. В упрощённом виде: , если система находится в равновесии.

Сначала дадим определение изотропности , чтобы продвинуться далее в изучении.

Изотропность — одно из ключевых свойств пространства в классической механике. Пространство называется изотропным, если поворот системы отсчета на произвольный угол не приведет к изменению результатов измерений.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.
Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства - его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.

Пример

Справедливость закона сохранения момента импульса относительно неподвижной оси вращения можно продемонстрировать на опыте со скамьей Жуковского. Скамьей Жуковского называется горизонтальная площадка, свободно вращающаяся без трения вокруг неподвижной вертикальной оси. Человек, стоящий или сидящий на скамье, держит в вытянутых руках гимнастические гантели и приводится во вращение вместе со скамьей вокруг оси с угловой скоростью ω1 . Приближая гантели к себе, человек уменьшает момент инерции системы, а так как момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость ее вращения ω2 возрастает.

(кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Момент импульса материальной точки относительно точки O определяется векторным произведением
, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z .

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется () :
.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.

Закон сохранения момента импульса : момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.
Это один из фундаментальных законов природы.

Аналогично для замкнутой системы тел, вращающихся вокруг оси z :

Отсюда или .

Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения.
Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.

Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке (уравнение 4.8), и состоит в следующем:

Если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.

Действительно, если M = 0, то dL / dt = 0 , откуда

(4.14)

Другими словами, момент импульса замкнутой системы с течением времени не изменяется.
Из основного закона динамики тела, вращающегося вокруг неподвижной оси z (уравнение 4.13), следует закон сохранения момента импульса тела относительно оси :

Если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если M z = 0, то dL z / dt = 0, откуда


Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства - его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.

Изменение импульса материальной точки вызывается действием на нее силы.

Умножая уравнение (1.7) слева векторно на радиус-вектор , Получаем

Где вектор называется Моментом импульса материальной точки , а вектор — Моментом силы. Изменение момента импульса материальной точки вызывается моментом действующей на нее силы.

Несколько тел, каждое из которых можно рассматривать как материальную точку, составляют Систему материальных точек . Для каждой материальной точки можно записать уравнение вто-рого закона Ньютона

(1.13)

В уравнении (1.13) индексы дают номер материальной точки. Действующие на материальную точку силы разделены на внеш-ние и внутренние . Внешние силы — это силы, действующие со стороны тел, не входящих в систему материальных точек. Вну-тренние силы — это силы, действующие на материальную точку со стороны других тел, составляющих систему материальных точек. Здесь — сила, действующая на материальную точку, индекс которой , со стороны материальной точки с номером .

Из уравнений (1.13) вытекают несколько важных законов. Если просуммируем их по всем материальным точкам системы, то по-лучим

(1.14) ,

Величина (1.15)

Называется Импульсом системы материальных точек. Импульс системы материальных точек равен сумме импульсов отдельных материальных точек. В уравнении (1.14) двойная сумма для вну-тренних сил обращается в нуль. Для каждой пары материальных точек в нее входят силы, которые по третьему закону Ньютона равны и противоположно направлены. Для каждой пары вектор-ная сумма этих сил обращается в нуль. Поэтому равна нулю и сумма для всех сил.

В результате получим:

(1.16)

Уравнение (1.16) выражает закон изменения импульса системы материальных точек. Изменение импульса системы материальных точек вызывается только внешними силами. Если на систему не действуют внешние силы, то импульс системы материальных то-чек сохраняется. Систему материальных точек, на которую не действуют внешние силы, называют Изолированной, или замкну-той, системой материальных точек.

Аналогичным образом для каждой материальной точки запи-сываются уравнения (1.8) моментов импульсов

(1.17)

При суммировании уравнений (1.17) по всем материальным точ-кам системы материальных точек сумма моментов внутренних сил обращается в нуль и получается Закон изменения момента импуль-са системы материальных точек :

(1.18)

Где введены обозначения: — момент импульса системы мате-риальных точек, — момент внешних сил. Изменение момен-та импульса системы материальных точек вызывается внешними силами, действующими на систему. Для замкнутой системы мате-риальных точек момент импульса сохраняется

.

Вектор, равный векторному произведению радиус-вектора на силу,
называется моментом силы .