Рациональные числа - это периодические дроби

Периодическая дробь

бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определённая группа цифр. Например, 1,3181818...; короче эту дробь записывают так: 1,3(18), то есть помещают период в скобки (и говорят: «18 в периоде»). П. д. называется чистой, если период начинается сразу после запятой, например 2(71) = 2,7171..., и смешанной, если после запятой имеются цифры, предшествующие периоду, например 1,3(18). Роль П. д. в арифметике обусловлена тем, что при представлении рациональных чисел, то есть обыкновенных (простых) дробей, десятичными дробями, всегда получаются либо конечные, либо периодические дроби. Точнее: конечная десятичная дробь получается в том случае, когда знаменатель несократимой простой дроби не содержит других простых множителей, кроме 2 и 5; во всех других случаях получается П. д., и притом чистая, если знаменатель данной несократимой дроби вовсе не содержит множителей 2 и 5, и смешанная, если хотя бы один из этих множителей содержится в знаменателе. Всякая П. д. может быть обращена в простую дробь (то есть она равна некоторому рациональному числу). Чистая П. д. равна простой дроби, числителем которой служит период, а знаменатель изображается цифрой 9, написанной столько раз, сколько цифр в периоде; при обращении в простую дробь смешанной П. д. числителем служит разность между числом, изображаемым цифрами, предшествующими второму периоду, и числом, изображаемым цифрами, предшествующими первому периоду; для составления знаменателя надо написать цифру 9 столько раз, сколько цифр в периоде, и приписать справа столько нулей, сколько цифр до периода. Эти правила предполагают, что данная П. д. правильная, то есть не содержит целых единиц; в противном случае целая часть учитывается особо.

Известны также правила определения длины периода П. д., соответствующей данной обыкновенной дроби. Например, для дроби a/p , где р - простое число и 1 ≤ a p - 1, длина периода является делителем р - 1. Так, для известных приближений к числу (см. Пи) 22 / 7 и 355 / 113 период равен 6 и 112 соответственно.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Периодическая дробь" в других словарях:

    Бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр (период), напр. 0,373737... чисто периодическая дробь или 0,253737... смешанная периодическая дробь … Большой Энциклопедический словарь

    Дробь, бесконечная дробь Словарь русских синонимов. периодическая дробь сущ., кол во синонимов: 2 бесконечная дробь (2) … Словарь синонимов

    Десятичная дробь, ряд цифр которой повторяется в одном и том же порядке. Например, 0,135135135… есть п. д., которой период 135 и которая равна простой дроби 135/999 = 5/37. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф … Словарь иностранных слов русского языка

    Десятичная дробь дробь со знаменателем 10n, где n натуральное число. Имеет особую форму записи: целая часть в десятичной системе счисления, затем запятая и затем дробная часть в десятичной системе счисления, причём количество цифр дробной части … Википедия

    Бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определённая группа цифр (период); например, 0,373737... чисто периодическая дробь или 0,253737... смешанная периодическая дробь. * * * ПЕРИОДИЧЕСКАЯ… … Энциклопедический словарь

    Бесконечная десятичная дробь, в к рой, начиная с нек рого места, периодически повторяется определ. группа цифр (период); напр., 0,373737... чисто П. д. или 0,253737... смешанная П. д … Естествознание. Энциклопедический словарь

    См. часть... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. дробь мелочь, часть; дунст, шарик, шрот, картечь; дробное число Словарь русских синонимов … Словарь синонимов

    периодическая десятичная дробь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN circulating decimalrecurring decimalperioding decimalperiodic decimalperiodical decimal … Справочник технического переводчика

    Если делится какое нибудь целое число а на другое целое число b, т. е. ищется число x, удовлетворяющее условию bx=а, то могут представиться два случая: или в ряду целых чисел найдется число х, которое этому условию удовлетворит, или же окажется,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Дробь, знаменатель которой есть целая степень числа 10. Д. д. пишут без знаменателя, отделяя в числителе справа запятой столько цифр, сколько нулей содержится в знаменателе. Например, В такой записи часть, стоящая слева… … Большая советская энциклопедия

Операция деления предполагает участие в ней нескольких основных компонентов. Первый из них - так называемое делимое, то есть число, которое подвергается процедуре деления. Второй - делитель, то есть число, на которое производится деление. Третий - частное, то есть результат операции деления делимого на делитель.

Результат деления

Самым простым вариантом результата, который может получиться при использовании в качестве делимого и делителя двух целых положительных чисел, является еще одно целое положительное число. Например, при делении 6 на 2 частное будет равно 3. Такая ситуация возможна, если делимое является делителю, то есть без остатка делится на него.

Однако существуют и другие варианты, когда осуществить операцию деления без остатка невозможно. В этом случае частным становится нецелое число, которое можно записать в виде комбинации целой и дробной частей. Например, при делении 5 на 2 частное составит 2,5.

Число в периоде

Один из вариантов, который может получиться в случае, если делимое не является кратным делителю, представляет собой так называемое число в периоде. Оно может возникнуть в результате деления в том случае, если частное оказывается бесконечно повторяющимся набором цифр. Например, число в периоде может появиться при делении числа 2 на 3. В этой ситуации результат, в виде десятичной дроби, будет выражен в виде комбинации бесконечного количества цифр 6 после запятой.

Для того чтобы обозначить результат такого деления, был изобретен специальный способ записи чисел в периоде: такое число обозначается помещением повторяющейся цифры в скобки. Например, результат деления 2 на 3 будет записываться с использованием этого способа как 0,(6). Указанный вариант записи применим также в случае, если повторяющейся является только часть числа, получившегося в результате деления.

Например, при делении 5 на 6 результатом будет периодическое число, имеющее вид 0,8(3). Использование этого способа, во-первых, является наиболее эффективным по сравнению с попыткой записать все или часть цифр числа в периоде, во-вторых, обладает большей точностью в сравнении с другим способом передачи таких чисел - округлением, а кроме того, позволяет отличить числа в периоде от точной десятичной дроби с соответствующим значением при сопоставлении величины этих чисел. Так, например, очевидно, что 0,(6) - существенно больше, чем 0,6.

Бывает, что для удобства расчетов нужно перевести обыкновенную дробь в десятичную и наоборот. О том, как это делать, мы поговорим в данной статье. Разберем правила перевода обыкновенных дробей в десятичные и обратно, а также приведем примеры.

Yandex.RTB R-A-339285-1

Мы будем рассматривать перевод обыкновенных дробей в десятичные, придерживаясь определенной последовательности. Во первых, рассмотрим, как в десятичные переводятся обыкновенные дроби со знаменателем, кратным 10: 10, 100, 1000 и т.д.Дроби с такими знаменателями, по сути, являются, более громоздкой записью десятичных дробей.

Далее мы рассмотрим, как переводить в десятичные дроби обыкновенные дроби с любым, не только кратным 10, знаменателем. Отметим, что при обращении обыкновенных дробей в десятичные получаются не только конечные десятичные, но и бесконечные периодические десятичные дроби.

Приступим!

Перевод обыкновенных дробей со знаменателями 10, 100, 1000 и т.д. в десятичные дроби

Первым делом, скажем, что некоторые дроби нуждаются в определенной подготовке перед обращением в десятичный вид. В чем она заключается? Перед цифрой, стоящей в числителе, необходимо дописать столько нулей, чтобы количество цифр числителя стало равно числу нулей в знаменателе. Например, для дроби 3100 число 0 необходимо один раз дописать слева от 3 в числителе. Дробь 610, согласно изложенному выше правилу, не нуждается в доработке.

Рассмотрим еще один пример, после чего сформулируем правило, которым особенно удобно пользоваться на первых порах, пока опыта в обращении дробей не так много. Так, дробь 1610000 после дописывания нулей в числителе будет иметь вид 001510000.

Как перевести обыкновенную дробь со знаменателем 10, 100, 1000 и т.д. в десятичную?

Правило перевода обыкновенных правильных дробей в десятичные

  1. Записываем 0 и ставим после него запятую.
  2. Записываем число из числителя, которое получилось после дописывания нулей.

Теперь перейдем к примерам.

Пример 1. Перевод обыкновенных дробей в десятичные

Переведем обыкновенную дробь 39 100 в десятичную.

Сначала смотрим на дробь и видим, что никаких подготовительных действий проводить не нужно - количество цифр в числителе совпадает с количеством нулей в знаменателе.

Следуя правилу, записываем 0 , ставим после него десятичную запятую и записываем число из числителя. Получаем десятичную дробь 0 , 39 .

Разберем решение еще одного примера по этой теме.

Пример 2. Перевод обыкновенных дробей в десятичные

Запишем дробь 105 10000000 в виде десятичной дроби.

Количество нулей в знаменателе равно 7 , а в числителе только три цифры. Допишем перед числом в числителе еще 4 нуля:

0000105 10000000

Теперь записываем 0 , ставим после него десятичную запятую и записываем число из числителя. Получаем десятичную дробь 0 , 0000105 .

Рассмотренные во всех примерах дроби - обыкновенные правильные дроби. Но как перевести неправильную обыкновенную дробь в десятичную? Сразу скажем, что необходимость в подготовке с дописыванием нулей для таких дробей отпадает. Сформулируем правило.

Правило перевода обыкновенных неправильных дробей в десятичные

  1. Записываем число, которое находится в числителе.
  2. Десятичной запятой отделяем столько цифр справа, сколько нулей есть в знаменателе исходной обыкновенной дроби.

Ниже приведем пример на использование этого правила.

Пример 3. Перевод обыкновенных дробей в десятичные

Переведем дробь 56888038009 100000 из обыкновенной неправильной в десятичную.

Сначала запишем число из числителя:

Теперь справа отделим десятичной запятой пять цифр (количество нулей в знаменателе - пять). Получим:

Следующий вопрос, который закономерно возникает: как перевести в десятичную дробь смешанное число, если знаменателем его дробной части является число 10, 100, 1000 и т.д. Для обращения в десятичную дробь такого числа можно воспользоваться следующим правилом.

Правило перевода смешанных чисел в десятичные дроби

  1. Выполняем подготовку дробной части числа, если это необходимо.
  2. Записываем целую часть исходного числа и ставим после него запятую.
  3. Записываем число из числителя дробной части вместе с дописанными нулями.

Обратимся к примеру.

Пример 4. Перевод смешанных чисел в десятичные дроби

Переведем смешанное число 23 17 10000 в десятичную дробь.

В дробной части имеем выражение 17 10000 . Выполним его подготовку и допишем слева от числителя еще два нуля. Получим: 0017 10000 .

Теперь записываем целую часть числа и ставим после него запятую: 23 , . .

После запятой записываем число из числителя вместе с нулями. Получаем результат:

23 17 10000 = 23 , 0017

Перевод обыкновенных дробей в конечные и бесконечные периодические дроби

Конечно, можно переводить в десятичные дроби и обыкновенные дроби со знаменателем, не равным 10, 100, 1000 и т.д.

Часто дробь можно легко привести к новому знаменателю, а затем уже воспользоваться правилом, изложенным в первом пункте данной статьи. Например, достаточно умножить числитель и знаменатель дроби 25 на 2, и мы получим дробь 410, которая легко приводится к десятичному виду 0,4.

Однако такой способ перевода обыкновенной дроби в десятичную удается использовать не всегда. Ниже рассмотрим, как поступать, если применить рассмотренный способ невозможно.

Принципиально новый способ обращения обыкновенной дроби в десятичную сводится к делению числителя на знаменатель столбиком. Эта операция очень похожа на деление натуральных чисел столбиком, но имеет свои особенности.

Числитель при делении представляется в виде десятичной дроби - справа от последней цифры числителя ставится запятая и дописываются нули. В получившемся частном десятичная запятая ставится тогда, когда заканчивается деление целой части числителя. Как именно работает этот способ, станет понятно после рассмотрения примеров.

Пример 5. Перевод обыкновенных дробей в десятичные

Переведем обыкновенную дробь 621 4 в десятичный вид.

Представим число 621 из числителя в виде десятичной дроби, добавив после запятой несколько нулей. 621 = 621 , 00

Теперь разделим столбиком 621 , 00 на 4 . Первые три шага деления будут такими же, как при делении натуральных чисел, и мы получим.

Когда мы добрались до десятичной запятой в делимом, а остаток отличен от нуля, ставим в частном десятичную запятую, и продолжаем делить, не обращая более внимания на запятую в делимом.

В итоге мы получаем десятичную дробь 155 , 25 , которая и является результатом обращения обыкновенной дроби 621 4

621 4 = 155 , 25

Рассмотрим решение еще одного примера, чтобы закрепить материал.

Пример 6. Перевод обыкновенных дробей в десятичные

Обратим обыкновенную дробь 21 800 .

Для этого в столбик разделим дробь 21 , 000 на 800 . Деление целой части закончится на первом же шаге, поэтому сразу после него ставим в частном десятичную запятую и продолжаем деление, не обращая внимания на запятую в делимом до того момента, пока не получим остаток, равный нулю.

В результате мы получили: 21 800 = 0 , 02625 .

Но как быть, если при делении мы так и не получим в остатке 0. В таких случаях деление можно продолжать бесконечно долго. Однако, начиная с определенного шага, остатки будут периодически повторяться. Соответственно, будут повторяться и цифры в частном. Это значит, что обыкновенная дробь переводится в десятичную бесконечную периодическую дробь. Проиллюстрируем сказанное на примере.

Пример 7. Перевод обыкновенных дробей в десятичные

Обратим обыкновенную дробь 19 44 в десятичную. Для этого выполним деление столбиком.

Мы видим, что при делении повторяются остатки 8 и 36 . При этом в частном повторяются цифры 1 и 8 . Это и есть период в десятичной дроби. При записи эти цифры берутся в скобки.

Таким образом, исходная обыкновенная дробь переведена в бесконечную периодическую десятичную дробь.

19 44 = 0 , 43 (18) .

Пусть перед нами несократимая обыкновенная дробь. К какому виду она приведется? Какие обыкновенные дроби переводятся в конечные десятичные, а какие - в бесконечные периодические?

Во первых, скажем, что если дробь удается привести к одному из знаменателей 10, 100, 1000.., то она будет иметь вид конечной десятичной дроби. Чтобы дробь приводилась к одному из таких знаменателей, ее знаменатель должен быть делителем хотя бы одного из чисел 10, 100, 1000 и т.д. Из правил разложения чисел на простые множители следует, что делитель чисел 10, 100, 1000 и т.д. должен, при разложении на простые множители, содержать лишь числа 2 и 5.

Подытожим сказанное:

  1. Обыкновенную дробь можно привести к виду конечной десятичной дроби, если ее знаменатель можно разложить на простые множители 2 и 5.
  2. Если кроме чисел 2 и 5 в разложении знаменателя присутствуют другие простые числа, дробь приводится к виду бесконечной периодической десятичной дроби.

Приведем пример.

Пример 8. Перевод обыкновенных дробей в десятичные

Какая из данных дробей 47 20 , 7 12 , 21 56 , 31 17 переводится в конечную десятичную дробь, а какая - только в периодическую. Дадим ответ на этот вопрос, не выполняя непосредственно перевода обыкновенной дроби в десятичную.

Дробь 47 20 , как легко заметить, умножением числителя и знаменателя на 5 приводится к новому знаменателю 100 .

47 20 = 235 100 . Отсюда делаем вывод, что данная дробь переводится в конечную десятичную дробь.

Разложение знаменателя дроби 7 12 на множители дает 12 = 2 · 2 · 3 . Так как простой множитель 3 отличен от 2 и от 5 , данная дробь не может быть представлена в виде конечной десятичной дроби, а будет иметь вид бесконечной периодической дроби.

Дробь 21 56 , во-первых, нужно сократить. После сокращения на 7 получим несократимую дробь 3 8 , разложение знаменателя которой на множители дает 8 = 2 · 2 · 2 . Следовательно, это конечная десятичная дробь.

В случае с дробью 31 17 разложение знаменателя на множители представляет собой само простое число 17 . Соответственно, эту дробь можно обратить в бесконечную периодическую десятичную дробь.

Обыкновенную дробь нельзя перевести в бесконечную и непериодическую десятичную дробь

Выше мы говорили только о конечных и бесконечных периодических дробях. Но может ли какая-либо обыкновенная дробь быть обращена в вид бесконечной непериодической дроби?

Отвечаем: нет!

Важно!

При переводе бесконечной дроби в десятичную получается либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь.

Остаток от деления всегда меньше делителя. Другими словами, согласно теореме о делимости, если мы делим какое-то натуральное число на число q, то остаток деления в любом случае не может быть больше, чем q-1. После окончания деления возможна одна из следующих ситуаций:

  1. Мы получаем в остатке 0, и на этом деление заканчивается.
  2. Мы получаем остаток, который при последующем делении повторяется, в результате мы имеем бесконечную периодическую дробь.

Иных вариантов при обращении обыкновенной дроби в десятичную не может быть. Скажем также, что длина периода (количество цифр) в бесконечной периодической дроби всегда меньше, чем число цифр в знаменателе соответствующей обыкновенной дроби.

Перевод десятичных дробей в обыкновенные дроби

Теперь пришло время рассмотреть обратный процесс перевода десятичной дроби в обыкновенную. Сформулируем правило перевода, которое включает три этапа. Как перевести десятичную дробь в обыкновенную?

Правило перевода десятичных дробей в обыкновенные дроби

  1. В числитель записываем число из исходной десятичной дроби, отбросив запятую и все нули слева, если они есть.
  2. В знаменатель записываем единицу и за ней столько нулей, сколько цифр есть в исходной десятичной дроби после запятой.
  3. При необходимости сокращаем полученную обыкновенную дробь.

Рассмотрим применение данного правила на примерах.

Пример 8. Перевод десятичных дробей в обыкновенные

Представим число 3 , 025 в виде обыкновенной дроби.

  1. В числитель записываем саму десятичную дробь, отбросив запятую: 3025 .
  2. В знаменателе пишем единицу, а после нее три нуля - именно столько цифр содержится в исходной дроби после запятой: 3025 1000 .
  3. Полученную дробь 3025 1000 можно сократить на 25 , в результате чего мы получим: 3025 1000 = 121 40 .

Пример 9. Перевод десятичных дробей в обыкновенные

Переведем дробь 0 , 0017 из десятичных в обыкновенные.

  1. В числителе запишем дробь 0 , 0017 , отбросив запятую и нули слева. Получится 17 .
  2. В знаменатель записываем единицу, а после нее пишем четыре нуля: 17 10000 . Данная дробь несократима.

Если в десятичной дроби есть целая часть, то такую дробь можно сразу перевести в смешанное число. Как это сделать?

Сформулируем еще одно правило.

Правило перевода десятичных дробей в смешанные числа.

  1. Число, стоящее в дроби до запятой, записываем как целая часть смешанного числа.
  2. В числителе записываем число, стоящее в дроби после запятой, отбросив нули слева, если они есть.
  3. В знаменателе дробной части дописываем единицу и столько нулей, сколько цифр есть в дробной части после запятой.

Обратимся к примеру

Пример 10. Перевод десятичной дроби в смешанное число

Представим дробь 155 , 06005 в виде смешанного числа.

  1. Записываем число 155 , как целую часть.
  2. В числителе записываем цифры после запятой, отбросив нуль.
  3. В знаменателе записываем единицу и пять нулей

Поучаем смешанное число: 155 6005 100000

Дробную часть можно сократить на 5 . Сокращаем, и получаем финальный результат:

155 , 06005 = 155 1201 20000

Перевод бесконечных периодических десятичных дробей в обыкновенные дроби

Разберем на примерах, как осуществлять перевод периодических десятичных дробей в обыкновенные. Прежде чем начать, уточним: любую периодическую десятичную дробь можно перевести в обыкновенную.

Самый простой случай - период дроби равен нулю. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби.

Пример 11. Перевод периодической десятичной дроби в обыкновенную

Обратим периодическую дробь 3 , 75 (0) .

Отбросив нули справа, получим конечную десятичную дробь 3 , 75 .

Обращая данную дробь в обыкновенную по алгоритму, разобранному в предыдущих пунктах, получаем:

3 , 75 (0) = 3 , 75 = 375 100 = 15 4 .

Как быть, если период дроби отличен от нуля? Периодическую часть следует рассматривать как сумму членов геометрический прогрессии, которая убывает. Поясним это на примере:

0 , (74) = 0 , 74 + 0 , 0074 + 0 , 000074 + 0 , 00000074 + . .

Для суммы членов бесконечной убывающей геометрической прогрессии существует формула. Если первый член прогрессии равен b , а знаменатель q таков, что 0 < q < 1 , то сумма равна b 1 - q .

Рассмотрим несколько примеров с применением данной формулы.

Пример 12. Перевод периодической десятичной дроби в обыкновенную

Пусть у нас есть периодическая дробь 0 , (8) и нам нужно перевести ее в обыкновенную.

0 , (8) = 0 , 8 + 0 , 08 + 0 , 008 + . .

Здесь мы имеем бесконечную убывающую геометрическую прогрессию с первым членом 0 , 8 и знаменателем 0 , 1 .

Применим формулу:

0 , (8) = 0 , 8 + 0 , 08 + 0 , 008 + . . = 0 , 8 1 - 0 , 1 = 0 , 8 0 , 9 = 8 9

Это и есть искомая обыкновенная дробь.

Для закрепления материала рассмотрим еще один пример.

Пример 13. Перевод периодической десятичной дроби в обыкновенную

Обратим дробь 0 , 43 (18) .

Сначала записываем дробь в виде бесконечной суммы:

0 , 43 (18) = 0 , 43 + (0 , 0018 + 0 , 000018 + 0 , 00000018 . .)

Рассмотрим слагаемые в скобках. Эту геометрическую прогрессию можно представить в следующем виде:

0 , 0018 + 0 , 000018 + 0 , 00000018 . . = 0 , 0018 1 - 0 , 01 = 0 , 0018 0 , 99 = 18 9900 .

Полученное прибавляем к конечной дроби 0 , 43 = 43 100 и получаем результат:

0 , 43 (18) = 43 100 + 18 9900

После сложения данных дробей и сокращения получим окончательный ответ:

0 , 43 (18) = 19 44

В завершение данной статьи скажем, что непериодические бесконечный десятичные дроби нельзя перевести в вид обыкновенных дробей.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Как известно, множество рациональных чисел (Q) включает в себя множества целых чисел (Z), которое в свою очередь включает множество натуральных чисел (N). Помимо целых чисел в рациональные числа входят дроби.

Почему же тогда все множество рациональных чисел рассматривают иногда как бесконечные десятичные периодические дроби? Ведь кроме дробей, они включают и целые числа, а также непериодические дроби.

Дело в том, что все целые числа, а также любую дробь можно представить в виде бесконечной периодической десятичной дроби. То есть для всех рациональных чисел можно использовать одинаковый способ записи.

Как представляется бесконечная периодическая десятичная дробь? В ней повторяющуюся группу цифр после запятой берут в скобки. Например, 1,56(12) - это дробь, у которой повторяется группа цифр 12, т. е. дробь имеет значение 1,561212121212... и так без конца. Повторяющаяся группа цифр называется периодом.

Однако в подобном виде мы можем представить любое число, если будем считать его периодом цифру 0, которая также повторяется без конца. Например, число 2 - это то же самое, что 2,00000.... Следовательно, его можно записать в виде бесконечной периодической дроби, т. е. 2,(0).

То же самое можно сделать и с любой конечной дробью. Например:

0,125 = 0,1250000... = 0,125(0)

Однако на практике не используют преобразование конечной дроби в бесконечную периодическую. Поэтому разделяют конечные дроби и бесконечные периодические. Таким образом, правильнее говорить, что к рациональным числам принадлежат

  • все целые числа,
  • конечные дроби,
  • бесконечные периодические дроби.

При этом просто помнят, что целые числа и конечные дроби представимы в теории в виде бесконечных периодических дробей.

С другой стороны, понятия конечной и бесконечной дроби употребимы к десятичным дробям. Если говорить об обыкновенных дробях, то как конечную, так и бесконечную десятичную дробь можно однозначно представить в виде обыкновенной дроби. Значит, с точки зрения обыкновенных дробей, периодические и конечные дроби - это одно и то же. Кроме того, целые числа также могут быть представлены в виде обыкновенной дроби, если представить, что мы делим это число на 1.

Как представить десятичную бесконечную периодическую дробь в виде обыкновенной? Чаще используют примерно такой алгоритм:

  1. Приводят дробь к виду, чтобы после запятой оказался только период.
  2. Умножают бесконечную периодическую дробь на 10 или 100 или … так, чтобы запятая передвинулась вправо на один период (т. е. один период оказался в целой части).
  3. Приравнивают исходную дробь (a) переменной x, а полученную путем умножения на число N дробь (b) - к Nx.
  4. Из Nx вычитают x. Из b вычитаю a. Т. е. составляют уравнение Nx – x = b – a.
  5. При решении уравнения получается обыкновенная дробь.

Пример перевода бесконечной периодической десятичной дроби в обыкновенную дробь:
x = 1,13333...
10x = 11,3333...
10x * 10 = 11,33333... * 10
100x = 113,3333...
100x – 10x = 113,3333... – 11,3333...
90x = 102
x =